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Abstract-This paper investigates an inverse technique for the identification of orthotropic elastic
constants from measured plate natural frequencies. In general, the accuracy of the identified par­
ameters depends on the method of estimation, modelling errors and measurement errors. The paper
addresses the parameter uncertainty due to errors in the measurements. Based on assumptions of
the measurement errors, second-order statistics of parameters are approximated by linearization
schemes. The main focus is on the possibility ofdesigning the experiment to minimize the uncertainty
of the estimated parameters, The uncertainty of each estimate as function of the experimental design
variables is investigated. Also the overall optimality of the experimental design defined as the
hypervolume of the confidence region is considered. The results show that not all parameters are
estimated with a sufficient precision in the general case, but by carefully designing the experiment,
the parameter uncertainties can be greatly reduced. Both thin and thick plates are considered with
focus on single-layer plates, but the results for laminated plates are also discussed. (I'; 1998 Elsevier
Science Ltd.

I. INTRODUCTION

Several different methods for deducing elastic material parameters from plate vibration
have been proposed, In most studies, measured natural frequencies are used as the exper­
imental data (Deobald and Gibson, 1988; Ayorinde and Gibson, 1993; Lai and Lau, 1993 ;
Moussu and Nivoit, 1993; Pedersen and Frederiksen, 1992; Frederiksen 1992a; Sol, 1986;
McIntyre and Woodhouse, 1988; Larsson, 1994), but methods have also been proposed
which take measured mode shapes into consideration (Fallstr6m, 1991; Fallstr6m and
Jonsson, 1991), The papers cited above, all address thin plates by employing the classical
plate theory, Recently, also more advanced theories have been employed in order to extent
the applicability and to extract out-of-plane parameters (Ayorinde, 1995; Frederiksen,
1992b, 1997a, 1997b), To verify the proposed methods, results have been compared with
those obtained by approved classical test methods or those found in the literature, Addition­
ally, a convincing agreement between model predictions and experimental measurements
[see e,g, Larsson (1994); Frederiksen (1997b)] improves the confidence in a particular
method. However, such approaches give only rough, qualitative indication of the accuracy
of the method, In general, both systematic and random errors are present in the identified
parameters. The errors depend on the method ofestimation, modelling errors and measure­
ment errors. Sol (1986) gave upper bounds on the parameter error caused by measurement
errors, but the derivation was not based on statistics and excluded the correlation among
parameters. Otherwise, none of the references, including those by the author, have presented
an evaluation of the precision of the estimated values. The present work addresses this very
important question, in that it is concerned with the random variability of the estimates
caused by the presence of measurement errors. The estimation problem studied here con­
cerns the determination of orthotropic elastic constants of composite plates from measured
values of the plate natural frequencies. Both thin and thick plates are considered. In the
case of thin plates, only the four in-plane elastic constants can be estimated, whereas for
thick plates the two transverse shear moduli are estimated in addition. The estimation
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approach is detailed in previous work, covering both the theoretical (Frederiksen, 1997a)
and the experimental aspects (Frederiksen, 1997b).

The first part of the present paper states the parameter estimation problem and presents
the analysis of the parameter uncertainty. By this analysis, confidence regions and intervals
can be specified in addition to the parameter estimates. This information is of utmost
importance, not only to state the uncertainty in a specific experiment, but also to assess the
robustness of the method in general. From a theoretical point of view, the analysis provides
the means of searching for the best design of the experiment. This is the purpose of the
final and main part of the paper. The best experiment is that providing the greatest precision
or conversely the smallest uncertainty of the required parameters. Hence, the objective in
the optimal experiment problem is to design the experiment to minimize the effect of errors
on the estimated parameter values. The uncertainty of each estimate as function of the
experimental design variables is studied, but also a criterion to indicate the overall optimal
design involving all parameters is considered. This criterion is that of minimum volume of
the confidence region for the parameters. The variables characterizing the experimental
design are the plate aspect ratio, the length-to-thickness ratio, the direction of orthotropy
for single-layer plates and the number of natural frequencies. Optimizing the experiment
by taking all design variables simultaneously is not an amenable task. Furthermore, con­
straints on the variables often exist in practice. Therefore, this work is a parametric study
of the individual parameter uncertainty as well as the overall optimality of the experimental
design. Emphasis is placed on single-layer plates, but also results for laminated plates are
discussed.

The results show that not all parameters are estimated with a sufficient precision in the
general case, but by carefully designing the experiment, the parameter uncertainties can be
greatly reduced. All results are obtained for a specific set of orthotropic elastic constants
typical for composite materials. Even though the results are material dependent, the exper­
imental design strategies obtained here are typical in a qualitative sense for orthotropic
materials in general.

2. PLATE MODEL

The basis of the mathematical model for predicting the natural frequencies of the
composite plate is briefly outlined. A rectangular plate of total thickness h, length a and
width b is considered. A global reference co-ordinate system x-y-z is located at the middle
plane, with the z-axis normal to this plane (see Fig. I). The plate is composed of n layers
of the same orthotropic material, each being oriented arbitrarily in the x-y plane. For each
layer, a local co-ordinate system 1-2-3 is defined which coincides with the material symmetry
axes. The primary direction of orthotropy I is chosen as the one of the two in-plane
orthogonal directions with the larger modulus of elasticity. The angle between the x-axis
and the I-axis of layer i is the lamination angle or the direction of orthotropy and is denoted

I"~

z

y

Fig. 1. Definition of structural and material co-ordinate systems.
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The plate theory employed here is the higher-order shear deformation theory (HSDT)
of Reddy (1984). It is based on the displacement field

, 4 (3wo(x,y) )u(x,y,z) = zt/JxCx,y)-z - l +t/JxCx, v)
3h2 ex '

4 (3Wo(~Y) )v(x,y, z) = zt/J,(x,y) _Z3 - l. +t/J.rCx, y)
. 3h2 e)'

w(x, y, z) = wo(x, y) (I)

where the two in-plane displacements of the midplane, Uo and vo, have been omitted, since
the analysis is linear, limited to symmetric laminates and considers only the flexural modes
of vibration. The displacement field (I) satisfies the condition of zero transverse shear
strains on the top and bottom surfaces of the plate, but neglects the transverse normal
strain.

Plane-stress reduced constitutive equations are employed. Foran orthotropic material,
these take the following form in the material co-ordinate system 1-2-3 (Whitney, 1987).

E I vl2 E2
0rill l-vLE2/E I I-VT2 E2/E I f'" ] tI3}= [G 13 o J{2E

13
}[600 = Vl2 E2 E2 r22

,6~:J
------ 0 623 0 G 23 2E23 '
1- VT2E2/EI l-vT2 E2/E J EI2

0 0 GI2

(2)

Here, E I and E2 are the two in-plane Young's moduli in the primary and secondary direction
of orthotropy, respectively, Gil is the in-plane shear modulus, V J2 is the in-plane major
Poisson's ratio and G13 and G23 are the transverse shear moduli. Note that the theory
involves only six of the nine independent engineering constants which characterize an
orthotropic material in three-dimensional configurations. The parameters which do not
enter the theory are E3, V13 and V23' For layers with material directions that are not aligned
with the plate co-ordinate system, rotational transformations (Whitney, 1987) are employed
to obtain constitutive relations relative to the reference co-ordinate system x-y-z.

Plates with all edges free are considered in the present vibration problem. Closed form
solutions of the employed higher-order theory cannot be obtained in this case. Instead,
approximate solution are obtained using the Ritz method. Details and performance of the
numerical model are described in Frederiksen (1995, 1997a). The present work also con­
siders thin plates. For this purpose a similar Ritz model based on the classical plate theory
(CPT) is used.

3. NONLINEAR ESTIMATION PROBLEM

The input quantities of the vibration model are classified into variables which are
known or measurable quantities and parameters which are unknown constants_ In the
estimation problem, estimates of the parameters are obtained by using measured values of
the input and output variables of the model. The independent (input) variables are the
planform dimensions a and b, the thickness h, and the stacking sequence which for single­
layer plates reduces to the single angle y. The variables are contained in the vector x, in the
single-layer case defined by
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x = {a,b,h,yV. (3)

Note that the material density p is not considered as a variable, but merely a numerical
constant. The parameters, which are the unknown elastic constants, are contained in the
vector 9 defined by

(4)

In case where the model is based on the classical plate theory, the parameter vector is
defined by the first four constants only. The dependent (output) variables are the I lowest
plate natural frequencies};. The equations for prediction of the frequencies are formally
written as

.I; = F;(x,9), i = 1,2, ... I, (5)

where i designates the frequency number. It is important to note that the functions F; are
nonlinear in the parameters 9.

In order to make statistical statements, several assumptions regarding the measurement
errors are made. First, let there be additive, zero mean measurement errors in};. Secondly,
it is assumed that the errors are uncorrelated, i.e. the covariance matrix of the errors is
diagonal. Furthermore, the experience from the experimental work (Frederiksen, 1997b)
suggests that the standard deviation of the measurement error is proportional tof" so that
the variance is proportional to fl. Therefore, it is assumed that the covariance matrix of
the measurement errors is given by

t/J = (J2 diag Llr Ii , ... , f}J. (6)

where (J2 is an unknown multiplicative constant. Additional assumptions are that there are
no errors in the independent variables x and that 9 is a constant parameter vector with no
prior information. Based on the theory of linear estimation, the weighted least-squares
estimator should be applied under these assumptions (Beck, 1977), i.e. the estimates are
obtained by minimizing the following objective function

$(9) = ±<./: -:~f,) 2

i= I .fi
(7)

where.i is the measured value off, and the denominator f? has been replaced by II to
avoid further nonlinearities in the minimization. It appears from eqn (7) that the approach
is based on utilizing all the first I frequencies. However, there is no theoretical reason for
this, it is purely to simplify the study. In practice one may wish to exclude certain frequencies
in the range e.g. due to measurement difficulties.

Details of the minimization of $ with respect to 9 are given in Frederiksen (l997a). It
is important to note that optimal properties possessed by the estimator and the statistical
quantities which can be derived based on the given assumptions in the linear case apply
only approximately to the present non-linear model.

4. ANALYSIS OF PARAMETER UNCERTAINTY

At the optimal set of parameters 9*, the objective function (7) attains its minimum
$* = $(9*). For some small positive value e, the e-indifference region is defined by

$(9) -$* ~ e. (8)

Equation (8) defines a domain in the M-dimensional 9 space (M being the number of
parameters) in which the rise in the objective function is considered insignificant compared
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to <1>*. The objective function <I> is approximated around its minimum using a second-order
Taylor series expansion. It is assumed that 9* is an unconstrained minimum of <1>, therefore,
the gradient vanishes and one obtains

(9)

where 159 = 9 - 9* and H* is the Hessian of <I> at 9*. At the minimum point, the Hessian is
approximated by the Gauss method (Bard, 1974) :

H* ::::oN, (10)

Analytical methods are used for the calculation of the first-order derivatives of the fre­
quencies (Frederiksen, 1997a). Using eqns (8)-(10), the e-indifference region is obtained as

(11 )

which is the equation of an M-dimensional ellipsoid.
To further assess the parameter interaction, the eigenvalue decomposition ofN can be

found

(12)

where A is the diagonal matrix that contains the eigenvalues Ai ofN, and Q is an orthogonal
matrix whose columns are the normalised eigenvectors that form the M principal axes of
the ellipsoid. The lengths of the principal axes are inversely proportional to the square
roots of the eigenvalues. The longest axis defines the worst-determined direction in 9 space,
and the shortest axis defines the best-determined direction (see Fig. 2). Observe that Nki I

denotes the k, I element ofN- 1 and not the reciprocal of Nkl .

With the covariance matrix of the measurement errors given by eqn (6), the covariance
matrix of the estimates is approximated by (Bard, 1974)

(13)

where the unknown quantity (J2 can be estimated using (Bard, 1974)

1/.IN::

Fig. 2. Two-dimensional indifference region, C = ~.
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2 0 I
(J ~ a- = --<1>*

I-M
(14)

A diagonal element Vkk of Ve is the variance of the estimated parameter Ok' and an off
diagonal element Vkl is the covariance between Ok and Of that determines the correlation
between parameters. The variance of a parameter estimate provides a measure of the
precision of the estimated value. A large variance means that small variations in the data
can affect the estimated value strongly and the precision of the estimate is poor. The square
root of Va is the standard deviation of the kth parameter. The approximate correlation
matrix can be obtained using the above equations. The k, I element of the correlation matrix
is given by

(IS)

The reliability ofthe statistics obtained here is checked in Table I by a few comparisons with
simulation results from Frederiksen (1997a). Zero mean, normally distributed measurement
errors with three different levels, (J = 0.5%, (J = I % and (J = 2% are considered. The
standard deviations obtained from the simulated results compare very well with the esti­
mated values calculated from eqn (13), even for (J = 2%. This indicates that the model is
nearly linear in the parameters for variations in a affected by at least a few percent errors
and thus, within this limit, the standard deviations are about proportional to the level of
the experimental errors. The average bias obtained from the simulated results is, in all
cases, small compared to the standard deviations of the estimates. Equation (14) provide
on the average an excellent approximation of the experimental error since in the three cases,
the average value of fJ was found to be 0.497, 1.000 and 1.993%, respectively.

To obtain confidence regions and intervals, it is assumed that the errors in the measure­
ments are normally distributed. Note that in this case, the maximum likelihood and the
weighted least squares methods give the same estimator. Note also that the assumption
that the error covariance matrix is known at least to within an arbitrary multiplicative
constant is fundamental. Confidence regions which coincide with the indifference region of
the objective function are chosen. With the model equations being nearly linear in the
parameters around a*, the IOO( I - p) % joint confidence region is (Beck and Arnold, 1977)

(16)

where F1/M,I - M) is the (1-p)-fractile in the F-distribution with M and I-M degrees
of freedom. For the sake of simplicity, one is frequently interested in the confidence interval
for each parameter taken separately (Beck and Arnold, 1977)

Table l. Monte-Carlo simulations for I = 14, ajh = 2.64, ajh = 10 and y = 0'. Material properties: E,jE, = 0.1,
G"jE, = G"jE, = 0.5, G2,jE, = 0.03, "" = 0.3. Normal distribution of errors

E, E, G" \'12 G" Cn

(J = 0.5%
Ayerage bias (%)" 0.15 -0.09 0.03 0.98 -0.19 0.10
Std. dey. (%)" I.3l 1.50 l.07 20.0 1.39 3.37
Est. std. dey. (%)" 1.34 1.52 l.07 19.7 1.43 3.41

(J= 1%
A yerage bias (%)" 0.35 ~0.20 0.06 -0.11 -0.35 0.50
Std. dey. (%)" 2.63 2.98 2.13 44.0 2.87 6.82
Est. std. dey. (%)b 2.67 3.04 2.13 39.5 2.87 6.83

(J =2%
A yerage bias (%)" 0.64 -0.67 0.12 0.39 -0.55 3.08
Std. dey. (%)" 5.29 5.97 4.44 86.0 5.99 15.9
Est. std. dey. (%)" 5.34 6.08 4.26 79.0 5.74 13.7

"Simulation results from Frederiksen (1997a) based on 100 replications.
h .jVu from eqn (13).
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(17)

in which t 1 - p / 2(I-M) is the (1-pj2)-fractile in the t-distribution with I-M degrees of
freedom. Using eqns (13) and (14), eqn (17) can be expressed as

(18)

5. EXPERIMENTAL DESIGN STRATEGIES

5.1. Experimental design variables and constraints
By designing the experiment is meant the choice of the values of x at which the I

frequencies are to be observed. Note that the design does not include the shape and the
boundary conditions of the plate since the rectangular shape is inherent in the model and
the free boundaries are chosen to obtain accurate measurements (Frederiksen, 1997b). Since
the problem is formulated in non-dimensional terms (Frederiksen, 1997a), the experimental
design variables to be considered are the aspect ratio alb and the length-to-thickness ratio
alh along with the material orientation y for single-layer plates. Also, the number of
frequencies I is considered as a design variable.

One should realise that in practice restrictions may be imposed on the variables. For
example, the experimental equipment has limited frequency range which limits the number
of frequencies to be measured. Also, a certain plate size is required to perform the measure­
ment and since the thickness is fixed once the plate is fabricated, a restriction exist on the
ratio a/h.

5.2. Goodness of the experimental design
The goal is to design the experiment in such a way that uncertainty is minimized.

Therefore, the goodness of a particular experimental design is assessed by considering the
confidence region as well as the uncertainty of each parameter. The quantity j N kk 1 is used
to measure the uncertainty of the kth parameter. It relates to statistical quantities as it is
proportional to both the standard deviation, the confidence interval (18) and the projections
of the indifference or confidence region on to the (h axis, see Fig. 2 and eqns (II) and (16).
For memo technical reasons, the notation N kk

1
= N(~ 1 is used, which may be specified as

for example N(~ 1 = N,:;; . Furthermore, normalized parameter values are used for the sake
of parameter comparison. The indifference region for the relative parameters is defined by

(19)

where

(20)

Specifically, one obtains

(21 )

so the quantity j Nfl, I provides a measure of the relative uncertainty of the estimat~ hence
it is suitable for comparisons between parameters. The smaller the value of VN(~ I the
smaller the parameter uncertainty, however, the absolute value has no direct significance
as long as (J2 is unknown or an indifference size G is not appointed. Note that the scaling in
eqn (21) does not change the correlation coefficients (15).

As an overall criterion to assess the optimality of the experiment, it is chosen to
consider the hypervolume of the confidence region in the normalized parameter space.
Note that this implies that each parameter is equally important in a relative sense. The
hypervolume is inversely proportional to the square root of the determinant of N which
equals the product of eigenvalues 2, of N :
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M

Vol.a:: n JK1 = JINr l
.

i= I

(22)

Hence, the optimal experiment is the one which minimizes JINI-T under given conditions.
One should note that if the estimates are correlated, the confidence ellipsoid is rotated in
space. A pure rotation does not affect the volume of the ellipsoid, but it does affect the
individual ft;;; I as illustrated by Fig. 2.

For the theor~tical study, the quantities JINI- 1 and J NO. 1 can be determined from the
model, taking.f: = f in eqn (10). Hence, no minimization of the objective function is
performed. Instead, values of the material parameters, which defines the minimum point
()*, are specified. The following set of non-dimensional orthotropic elastic constants is
considered throughout this work

£1 = 1, £z = 0.1, G12 = 0.05, VIZ = 0.3, GI3 = 0.05, GZ3 = 0.03. (23)

It is important to realise that the quantities (21) and (22) are material dependent due
to the non-linearity of the problem. Therefore, the results presented here are not universal,
but apply to this material only. However, in a qualitative sense the results are typical for
orthotropic materials in general.

6. RESULTS

6.1. Single-layer plates, classical plate theory
Single-layer plates are treated in detail because they provide the most obvious test

specimens and because they are comparatively simpler than general laminates in that they
are characterized by a single angle y. This section presents results for the four in-plane
elastic constants based on the classical plate theory (CPT). Note that in this case, the
uncertainty in terms of J NO. I is independent of h. This is because the estimation problem
is non-dimensional in terms of the frequencies and non-dimensional frequencies are inde­
pendent of h when obtained by the classical plate theory.

Figure 3 shows parameter uncertainties as functions of the aspect ratio for three
different angles, y = 0, 15 and 30°. The results are obtained for I = 10. Note that curves of
this type are discontinuous because N is a matrix derived from sensitivities. Discontinuity
occurs when frequency number I and 1+1 intersect and the corresponding modes switch
place as a result of frequencies being ranged in a sequential order of magnitude. For y = 0°
[Fig. 3(a)], the uncertainties of £}, £z and GIZ are about the same and varies little with the
aspect ratio. The uncertainty in the estimation of Poisson's ratio differs radically. First, the
curve is characterized by several pronounced local minima (the three most important are
indicated by A, B, C). Second, the uncertainty is much larger (note the separate axis for
VIZ)' Curves similar to Fig. 3(a) are shown in Fig. 3(b, c) for}' = 15 and 30°, respectively.
The off-axis angle has a beneficial effect on the estimation of VIZ in the sense that the
precision is much less sensitive to the aspect ratio. Unfortunately, this is at the expense of
the precision of the other parameters. For example, with y = 30°, the uncertainty of G12 is
about three times that for the plate with}' = 0° for an aspect ratio between 1.2 and 2.2.

It is important to observe that the poor precision of VIZ that occurs between the minima
in Fig. 3(a) does not significantly affect the precision of the other parameters. This is
because the longest principal axis of the ellipsoid eqn (11) is nearly coincident with the V1Z­

axis. Thus, there is little interaction between VIZ and the shear and Young's moduli. This
has an important practical application, since £1' £z and G12 can be estimated with high
precision regardless of the precision of VIZ' Table 2 gives values of the uncertainties for two
different values of the aspect ratio for a plate with y = 0°. In addition, Table 2 considers
the effect of taking V12 as a fixed quantity (with the correct value) in the model. When the
number of unknown parameters are reduced, the uncertainties of the remaining paramters
decrease since correlation effects are reduced. For an aspect ratio where VIZ is ill-determined
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Fig. 3. Normalized parameter uncertainties vs aspect ratio for estimation of in-plane elastic constants

of thin, single-layer plates, 1= 10: (a) I' = 0°; (b) y = 15°; (c) I' = 30°.

(alb = 2.1), especially the precision of £2 can be improved by fixing VI2, but for alb = 1.778,
which corresponds to point B in Fig. 3(a), the effect is negligible.

Figure 4 shows the overall optimality criterion as function of the aspect ratio for the
three cases in Fig. 3. The optimal experimental design is confirmed to be a plate with y = 0°
and an aspect ratio at point B. Minimum points A and C are nearly as good. A small angle



1250 P. S. Frederiksen

Table 2. Normalized parameter uncertainties at two different aspect ratios with and without estimation of V,},

I = 10 and l' = on

Estimate l'" ? alb .....iN;" l ...../l\i£~l ~NG~ ~

yes 1.778 1.06 1.06 1.21 13.0
no 1.778 1.06 1.04 1.21
yes 2.1 0.94 1.34 1.32 59.9
no 2.1 0.86 0.79 1.20

/--------/
80

140.----,.---.------,..-------,----.------,--1\,----,--/'-;=-\-----,---.----.--'

I
~/___ y=oo

........ r= 15° I \
--- y=30° I 1\

. /---'"
.:~\ / \ /-\1 ",/
: : ,"',\... \ _/ J

" "----

100

60

40

20

\... ~\'''''''''~ .
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3.02.72.42.11.81.51.20.9

O'--__...l-__....L__---'-__........J -'--__-'--__-'-__---'-__........J'--__

0.6 3.3 3.6
alb

Fig. 4. Normalized volume of confidence region vs aspect ratio for estimation of in·plane elastic
constants of thin, single·layer plates, I = 10.

(,,/ = 15°) is advantageous only for aspect ratios between the minimum points of the plate
having')' = 0°, Larger angles (,,/ = 30°) yield an overall significantly poorer experimental
design.

The effect of the number of observations Ion the uncertainties is studied in Fig. 5 for
the plate with}' = 00 and the aspect ratio of point B in Fig. 4. It is seen that including more
frequencies in the estimation leads to smaller uncertainties. This is because each frequency
adds new information not only in terms of a sensitivity coefficient for each parameter, but

10

15

1.5

2.0

3.0 r--r----,---,--,.--,--.,..-----,-----,--r----, 20

~N-l ~N-l
Ok V VJ2

2.5 / 12

£, -..-.....'-....._----­
£2

°12

._.L._._._.
1.0

5

0.5

0.0 L--'-5--'-6--'-7---'-8--'9--'1-0-1'-1-1.1-2- 1-'-3----'14 a
I

Fig. 5. Normalized parameter uncertainties vs number of frequencies for estimation of in·plane
elastic constants of thin. single-layer plates, l' = 0". alb = 1.78.
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also because correlation among the parameters is generally reduced. Since more frequencies
improve the accuracy of the estimates, no value of I is optimal in terms of the overall design
criterion (22), but the improvement is typically small beyond a certain value of 1. In
addition, since higher-order frequencies are generally predicted less accurately than lower
ones, there is reason to include no more frequencies than actually necessary. Figure 5 shows
that in the present case no significant reduction of J NI~ 1 occurs for Ej, E2 and G12 beyond
the eighth frequency, whereas a slight improvement of the precision of V12 is obtained for
frequency number nine and 10. Thus, eight to 10 frequencies is appropriate when estimating
the in-plane parameters of thin plates. It should be noted that according to eqns (16) and
(18), the confidence region and intervals depend on I not only through N, but also through
the t and F statistics. The values of the t and F statistics decrease for increasing value of I,
so for this reason more frequencies are desirable. Still, this effect alone is quite small, as
one would observe from statistical tables.

Now, the minima A, Band C in Fig. 3(a) are examined in detail with respect to the
estimation of V 12• At each of these minima, the plate possesses a pair of mode shapes and
associated frequencies that are particularly sensitive to Poisson's ratio. This is illustrated in
Fig. 6 for point C where alb = 2.78. Here, the fifth and sixth mode shapes have coincident
frequencies for a zero value ofv l2 [Fig. 6(a)]. (In the figure, the non-dimensional frequency
is I =fa2JpIE1h2.) A positive value of V l2 has the effect of coupling the modes and
separating the frequencies [Fig. 6(b)]. Therefore, the frequencies of these two modes are
very sensitive to V12 • Table 3 summarizes the characteristics of the three minimum points in
Fig. 3(a). It is seen that with very close approximation, the aspect ratios creating the two­
mode couplings are also those of the minima in Fig. 3(a) which are obtained for all 10

Mode No. 6
Type 12

/

(a)

Mode No. 6
Type 30 +12

/

(b)
Fig. 6. Effect of Poisson's ratio on the fifth and sixth mode shape of a single-layer plate with
alb = 2.78, and i' = 0". Dashed lines indicate nodal Jines: (a) decoupled modes with coincident
frequencies for Vl1 = OJs = It, = 2.834; (b) coupled modes with separated frequencies for V12 = 0.3,

.r, = 2.775,fr. = 2.915.
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Table 3. Important aspect ratios for the estimation of Poisson's ratio. Single-layer plate, y = 0°

Optimal region Most sensitive coupled modes
[Fig. 3(a)] alb P::: mode numbers mode types

Vii

A 1.139' 18.9 5,6 03 - 21,03 +21
1.137b 19.0

B 1.776' 13.0 2,3 02-20,02+20
1.778b 13.0

C 2.773' 19.1 5,6 30-12,30+ 12
2.782b 19.2

'Minimum point in Fig. 3(a) based on 10 frequencies.
b Aspect ratio creating maximum coupling effect for the two modes in the last column.

frequencies. The coupling in point B is particularly simple because it involves the coupling
of the first bending modes in the x- and y-directions. The maximum coupling in this case
(equivalent to coincident frequencies for V 12 = 0) is obtained for

(24)

This is a well known relation that has been used for the determination of Poisson's ratio,
[e.g. Sol (1986); McIntyre and Woodhouse (1988); Fiillstr6m (1991); Frederiksen (l992b)].
By contrast, the existence of the minima A and C is not well known. Unfortunately, a
similar simple relation as eqn (24) for the coupling at point A and C in terms of the elastic
constants cannot be given because the bending-twisting mode type depends on G12• Also,
the uncertainty of V12 at these points are approximately 50% larger than that of the global
minimum in point B. Failing to take an aspect ratio in the vicinity of one of the minima
results in a very poor precision of Poisson's ratio, hence it is likely that the estimated value
becomes completely erroneous (Deobald and Gibson, 1988). It should be noted that for an
increasing degree of orthotropy, the shape of the minima becomes more narrow with
increasing minimum values, leading in general to less reliable estimates of V12•

For the plate with y = 30c
, mode shapes that have high frequency sensitivities with

respect to VI2 are not limited to specific aspect ratios. Therefore, Vl2 can be estimated with
reasonable precision over a wide range of alb [Fig. 3(c)]. Figure 7 shows the two most
important mode shapes for the estimation of V12, taking alb = 2.

6.2. Single-layer plates, higher-order plate theory
This section presents results obtained with the HSDT-model. This model addresses

thick plates and enables the estimation of the two transverse shear moduli in addition to
the in-plane parameters. To assure a reasonable precision of the estimates of G13 and G23 ,

two more frequencies are included, i.e. the results are obtained for 1= 12. Uncertainties of
the in-plane and out-of-plane parameters versus aspect ratio for a plate with alh = 20 and

Mode No. 2 Mode No. 4

Fig. 7. Mode shapes possessing high frequency sensitivity with respect to Poisson's ratio. Single­
layer plate, y = 30', alb = 2 (dashed lines indicate nodal lines).
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Fig. 8. Normalized parameter uncertainties vs aspect ratio for estimation of elastic constants of
thick, single-layer plates, y = OC, a/h = 20 and I = 12: (a) in-plane elastic constants; (b) transverse

shear moduli.

y = 0° are shown in Fig. 8(a, b). As regards the in-plane parameters, the observations
drawn in the previous section hold qualitatively also for moderately thick plates. This is
confirmed by the similarity between Figs 8(a) and 3(a). Particularly, the three characteristic
minima A, Band C also exist in Fig. 8(a). It must be emphasized that due to the transverse
shear effects, eqn (24) and the aspect ratios given in Table 3 apply only approximately to
thick plates. Even though two more frequencies are included here, the uncertainties of the
in-plane parameters are larger than those calculated with the CPT-model. This is not
surprising since some correlation exist between the transverse shear moduli and the in­
plane parameters. This is most pronounced for £} and £2' whereas the uncertainties of G12
and V,2 are not significantly affected.

Next, the uncertainty ofestimates of G13 and G23 is considered [Fig. 8(b)]. The precision
of these estimates is closely related to the severity of the transverse shear effects on the
plate vibration. Obviously, the particular mode associated with each frequency is of great
importance. Bending-like modes in the x-direction have frequencies that are sensitive with
respect to G13 and analogously in the y-direction. Because as many as 12 frequencies are
considered, bending type modes in both directions occur. One should recall that transverse
shear effects are more pronounced in materials that have a high ratio of in-plane Young's
modulus to transverse shear modulus than those with a low ratio (e.g. isotropic materials).
For the present material, which is typical for composites, this ratio is much higher in the 1­
direction (E}/G 13 = 20) than in the 2-direction (E2/G23 = 3.33). Because of this, the plate
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possesses natural frequencies that are generally more sensitive with respect to Gl3 than to
Gn . Therefore, as seen in Fig. 8(b), the estimate of G13 is generally more accurate than that
of Gn .

When going further into details with Fig. 8(b) it is important to note that the curves
are obtained for fixed values of a and h, i.e. alb is varied by varying b only. The transverse
shear effect of a particular mode is strongly dependent on the wavelength-to-thickness ratio.
Since alh is a fixed quantity whereas blh decreases for increasing alb, mainly modes
dominated by bending in the y-direction are affected by varying alb. This is the reason that
the precision in the estimation of GZ3 improves whereas that of G l3 is about constant for
increasing alh. This trend holds only locally, however. For increasing value of alb (decreas­
ing h), especially the frequencies of modes dominated by bending in the y-direction increases
and this may cause these frequencies to gradually fall outside the fixed range of 12 frequenc­
ies. Such a situation occurs at alh = 1.39. For an aspect ratio just below this value, the 12th
mode is a pure bending mode in the y-direction. This mode is very sensitive to GZ3 , thus it
contributes significantly to the estimation of Gn . When alh is increased above this value,
mode 12 and 13 switch place, the 12th mode now being dominated by bending in the x­
direction. Consequently, a severe increase in the uncertainty of Gn is observed. The incident
is repeated at larger aspect ratios, alb = 2.16 and alb = 2.96. Therefore, to obtain a high
precision of both GD and Gn , an aspect ratio about 2.9 is sensible. A larger value has an
insignificant effect on the precision of GD , but in return ruins the precision of GZ3 '

For comparison, Fig. 9 shows parameter uncertainties as functions of alh for a plate
with I' = 30. The parameters are estimated with less precision compared to the plate with
}' = 0 . The exception is the curve for VIZ' which resembles that of the CPT-model in Fig.
3(c). Note that the uncertainty of G13 is somewhat smaller than that of Gn which is due to
the afore-mentioned higher ratio of in-plane Young's modulus to transverse shear modulus
in the primary direction of orthotropy. Above alh = I, the correlation between GI3 and Gn
is high (;:;::0.9). This explains the parallel course of the two curves in Fig. 9(b). Generally,
the correlation among parameters is much higher for plates with y -# 0" than for those with
" = 0 . This is basically explained by the mode shapes. When material and plate axes do
not coincide the mode shapes become more complicated as compared to the fairly simple
bending and twisting like modes of orthotropic plates. Therefore, plates with y -# 0' as
compared to those with y = OC have a smoother distribution of frequency sensitivities in
the sense that each frequency is affected by all or nearly all parameters, but in return at
less strength for each particular parameter. This situation causes high correlation among
parameters. It is concluded that when using the HSDT-model, plates with off-axis material
directions (y -# 0) provides a much poorer experimental design than does plates with
y = O.

Now, returning to the case with}' = 0, Table 4 shows the correlations between the
estimates for values of alb representing point Band C in Fig. 8(a). Point B suffers from
fairly high correlations between the estimates £1' £2, GD and Gn . This interaction is
responsible for the local rise in the uncertainty of all four parameters observed in Fig. 8(a,
b). Other local peaks occurring at alb = 1.20 and alb = 2.50 are also due to a local rise in
the correlation between the estimates. By contrast, with the aspect ratio of point C, the
parameter correlation is much less. Only the correlations between £1 and GD and between
£2 and GZ3 have moderately high values. This seems inevitable because of the inherent
coupling between the in-plane Young's modulus and the transverse shear modulus. Note
also that VIZ correlates very little with any of the other parameters.

Figure 10 shows that overall, the optimal aspect ratio for the plate with y = 0' is that
corresponding to point C (alb = 2.74). At this point the uncertainty of VIZ is at a local
minimum [Fig. 8(a)] and the uncertainties of G 13 and Gn are close to their global minimum
values [Fig. 8(b)].

Curves similar to those in Figs 8 and 10 have also been calculated for 1= 13 and
1= 14. Apart from changing the points of discontinuity, changes occur mainly for GD and
Gn . For these estimates, the uncertainties are smaller and the curves flattens off somewhat
rendering the uncertainties less affected by the aspect ratio as compared to the case with
1= 12, but the general trend as seen in Fig. 8(b) does not change, i.e. an aspect ratio around
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Table 4. Correlations PO,.I!, between estimates at two different aspect ratios, y = 0", alh = 20 and 1= 12

G IJ

£2 G l2 V l2 GIJ G2J

-0.62" 0.03 0.01 -0.90 0.61
-O.IOb 0.05 0.01 -0.79 0.09

0.17 0.Q2 0.60 -0.91
0.17 -0.13 0.09 -0.85

0.01 -0.15 -0.27
-0.05 -0.27 -0.25

-0.04 -0.12
-0.11 0.03

-0.64
-0.11

"Values in bold obtained at alb = 1.769 corresponding to minimum point B in Fig. 8(a).
b Values in normal obtained at alh = 2.740 corresponding to minimum point C in Fig. 8(a)_
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Fig. 10. Normalized volume of confidence region vs aspect ratio for estimation of elastic constants
of thick, single-layer plates, y = 0°, alh = 20 and 1= 12.

2.9 is still the best choice considering the precision of both G13 and G23 • Also the overall
optimal aspect ratio is the same as that found for I = 12. It is interesting to note that the
experimental results for two orthotropic plates presented in Frederiksen (1997b) were
obtained with an aspect ratio in the vicinity of point B. Thus, the parameters G13 and G23 ,

which were of particular interest, were not estimated with optimal precision. The precision
of these estimates could be greatly improved by taking a much larger aspect ratio. In the
present case [Fig. 8(b)], the value of the normalized uncertainty for G23 decreases from 26.0
at point B to 13.2 at point C and that of G13 decreases from 12.6 to 4.8.

The effect of the length-to-thickness ratio on the parameter uncertainties is considered
in Fig. 11 for a plate with y = OC. Aspect ratios are chosen corresponding to minima Band
C in Fig. 8(a). Note that unlike the CPT-model, the corresponding values of alb depend
on a/h due to the transverse shear effect. In both figures, the uncertainties of the in-plane
shear and Young's moduli are practically independent of a/h. In contrast, there is a strong
improvement in the precision of G13 and G23 for decreasing a/h, which is due to the increased
severity of the transverse shear effect. Still, the uncertainties are much larger than those of
£1, £2 and GI2 except for very thick plates. Comparing Fig. 11 (a, b), it is seen that for a
given value of a/h, all parameters except Vl2 are estimated with greater precision for alb
chosen at point C than at point B. This is particularly the case for G13 and G23 which are

(b)(a)

O'------l_--L_-..L_--'-_~_-'-_:':-~

5 10 15 20 25 30 35 40 45
alh

10

15

Fig. II. Normalized parameter uncertainties vs length-to-thickness ratio for estimation of elastic
constants of thick, single-layer plates, y = 0° and 1= 12: (a) B minimum in Fig. 8(a); (b) C

minimum in Fig. 8(a).



Estimation of elastic constants 1257

_LV12

.....

-------'---------

30,-,----,...-.,.-0:-.---,-..,-----,--,---r----.--, 30r-,---,...-,---,--...,----,,------.-,----,...----,

~N2 ---~.~---~---~ ~N~l

25 .... ~ 25
v'z

••..~GZ3

(b)

20 \/G
13

15 ,

X
'\ Ez

. \
10 ". \

'. \

5E~ ~.~.-.~.~.~~.~.~.~.~.~.~.~.~.~.~.~.~.~.
o 7 8 9 10 11 12 13 14 15 16

I
12 13 14 15 16

I
10 11

(a)
98

20

Fig. 12. Normalized parameter uncertainties vs number of frequencies for estimation of elastic
constants of thick, single-layer plates, y = 0": (a) alh = 10, alb = 2.64; (b) alh = 20, alb = 2.74.

parameters of much interest. For a specified degree of precision of G13 and G23 , a much
larger value of a/h can, therefore, be tolerated when alb is taken corresponding to point C
than to point B. This is an advantage not only from an experimental point of view but also
because the error of the HSDT-model, which is neglected in this work, worsens for decreas­
ing a/h.

The effect of the number of observations Ion the uncertainties is studied in Fig. 12 for
two different values of a/h. In each case, the value of alb is taken as that which minimizes
the quantity JINI- 1• As for the CPT-model (Fig. 5) more frequencies in the estimation
leads to smaller uncertainties and beyond a certain value of I the improvement is small.
The figure shows that higher-order frequencies are particularly important to obtain an
acceptable precision of G23 • In order not to compromise the accuracy of the HSDT-model
no more frequencies than are actually necessary should be included. Figure 12 shows that
in the present case, 13 frequencies seems an appropriate choice for both values of a/h. Note
that other materials and aspect ratios may lead to a different number.

6.3. Laminated plates
Since the model supports symmetric laminates composed of layers of the same ortho­

tropic material, the estimation procedure and the calculations of the parameter uncertainties
can be performed also for such plates. With respect to the length-to-thickness ratio and the
number of frequencies the general results for single-layer plates also hold for laminates.
Likewise, the experimental design can be optimized with respect to a/b. In general, however,
laminates constitute a much poorer experimental design than single-layer plates. Never­
theless, it is relevant to investigate the parameter uncertainties of laminates since they are
of interest in real tests. In this section some general aspects when considering laminated
plates are discussed, supported by a few typical results.

The flexural vibration of plates is governed by the global plate bending stiffnesses.
Because the different orientations of the layers in the laminate smoothens anisotropy in a
global sense, certain changes in the elastic constants may have little effect on the bending
stiffnesses as compared with single-layer plates. Therefore, compared with single-layer
plates, the elastic constants of laminates are more difficult to identify from the frequencies,
rendering less reliable estimates. As an example, consider a multi-layer cross-ply laminate.
The effect of the parameter E1 on the bending stiffnesses is about the same in the x- and y­
directions because layers are oriented in both 0 and 90°. So is the case for E2• Suppose E,
and E2 are increased and decreased, respectively, by the same magnitude, then the bending
stiffnesses are very little affected and so are the frequencies. Similarly, the effect ofdecreasing
G13 on the frequencies can, at least approximately, be eliminated by increasing G23 and vice
versa. Because of this, estimation of the material parameters from natural frequencies of
such plates is associated with very high correlation among these four parameters. It is
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Table 5. Correlations p'V',between estimates for eight-layer laminates, a/h = 20 and 1= 12

Of

G"

V 11

£, G" Vl2

-0.76" -0.02 -0.01
-0.97" 0.12 0.66
-0.39" 0.12 -0.10

0.06 -0.42
-0.12 -0.70
-0.75 -OJJ9

-0.09
-0.03

0.15

G" G"

0.51 -0.70
0.81 -0.84

-0.66 0.38

-0.84 0.84
0.85 0.85
0.49 -0.67

-0.07 -0.00
-0.09 -0.13
-0.12 0.28

0.31 -0.32
0.78 -0.77
0.39 -0.34

-0.93
-0.99
-0.87

"Values in normal: cross-ply [0',90',0', 90ls laminate, alb = 1.84.
bValues in bold: angle-ply [45". -45',45', -45'], laminate, alb = 1.01.
'Values in italic: angle-ply [3D", - 30",30', - 30"]s laminate, alb = 1.23.

Table 6. Nonnalized parameter uncertainties for eight-layer laminates, a/h = 20 and 1= 12

Laminate ...../ IVEI
I JN E,' ~ ,/lVI~Jl ",/ IV(;,~ ~v' 0"

[0,90,0,90']s 207 17.0 1.37 39.7 21.6 27.4
[45', -45",45" - 45']s 6.00 44.3 1.55 27.5 69.7 111.1
[30', - 30',30" - 30']s 1.76 7.61 3.81 18.8 21.9 37.8

readily seen that the more layers in the laminate and the closer the layers are oriented at
90· to each other, the more pronounced is this effect. Unbalanced laminates, i,e, laminates
where coupling between bending and torsion exist, are particularly vulnerable, since as
previously discussed for the single-layer case, this coupling further increases correlation
among parameters. This renders the 45" angle-ply laminate particularly poor for the esti­
mation of material parameters.

In Table 5 are shown the correlation coefficients obtained for eight-layer cross-ply and
angle-ply laminates. As in the previous section, results are given for a/h = 20 and 1 = 12,
The aspect ratio in each case is taken to be that which minimizes the quantity JINI- 1

• The
cross-ply and the 45') angle-ply laminates have high interactions between the parameters,
the latter being an exceptionally poor experimental design with values of PE,.E, and
Pc".c

21
close to unity. As expected, the 30'" angle-ply laminate has generally less correlation

among parameters. In particular, this is the case for PE,.F:,' In return, an increased interaction
between £2 and GI2 is observed. Corresponding normalized uncertainties for the three
experimental designs are given in Table 6. A high correlation between £1 and £2 has a very
severe effect on the relative precision of £2 because £1 is lO times larger than £2' This is
particularly the case for the cross-ply and the 45° angle-ply laminates. For all three plates,
estimates of £1 and GI2 are the most reliable. For the 45' angle-ply, uncertainties of the
other four parameters are so large that the estimates will be useless.

As discussed in Section 6.2, the precision of the in-plane parameters is somewhat better
when using the classical thin plate theory because fewer parameters are involved. Still, the
trend observed with the advanced thick plate model also applies to the CPT-model, i.e. the
results typically suffer from a very high correlation coefficient PE,.E,'

7. DISCUSSION

In parameter estimation problems, calculating values of the estimates is only part of
the solution. In order to assess the precision of the estimates, confidence regions should be
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specified in addition. Here, an approximate analysis has been presented for the purpose of
calculating confidence regions and intervals of material constants estimated from plate
natural frequencies. The analysis relies on several statistical assumptions. Furthermore, the
expressions are all approximate because the problem is nonlinear.

The method has been used to study theoretically the relative uncertainty of the estimates
for different experimental designs using a fixed test material. The quantity used to measure
the parameter uncertainty is the parameter standard deviation normalized by the measure­
ment error. The investigation includes variations of aspect ratio, length-to-thickness ratio,
direction of orthotropy and number of frequencies.

For single-layer plates, the in-plane Young's and shear moduli are very well-deter­
mined. The high reliability of Gl2 is of particular importance because Gl2 is difficult to
measure by classical tests. Poisson's ratio is generally less well-determined. For the QO-plate,
a reliable estimate of Vl2 is obtained only at specific aspect ratios where mode shapes are
created that have high frequency sensitivities with respect to V12' Even in this case, the
uncertainty of V12 is about lQ times higher than those of E" £2 and G12 . For plates with
material axes different from the plate axes, the precision of V12 is much less affected by the
aspect ratio, but it is not better than the best obtained for the QO-plate.

When estimating elastic constants of thick plates, particular attention must be paid to
ensure a sufficient precision of the estimates of G13 and G23 • First, in order to improve the
precision, it is very effective to reduce the length-to-thickness ratio. Second, a sufficient
number of frequencies must be included, but taking frequencies beyond a certain number has
limited effect. Finally, plates with material axes parallel to the plate axes are advantageous
compared to plates having other material directions. For a O"-plate with a/h less than about
15, the precision of G13 is comparable to that of the in-plane moduli, whereas the precision
of G23 is slightly lower.

In the search for an optimal experimental design, the aspect ratio is a very important
design variable because it has great impact on the vibration mode shapes which in turn are
decisive for the frequency sensitivities. Overall, the best experimental design, i.e. that having
the smallest hypervolume of the confidence region, is found for the single-layer QO-plate.
For thin plates, the optimal aspect ratio is that which yields equal bending stiffnesses in the
directions of the plate axes, whereas for thick plates a significantly higher value is optimal.
The optimal experimental designs are characterized by having little correlation among the
parameters. The optimal design depends on the material parameters which are themselves
the goal of the test. Thus, in practice the first experiment cannot be expected to provide
estimates with minimum uncertainty, but the preliminary values may serve as a means of
designing a better experiment where precision has been optimized either for individual
parameters or taken as a whole. It is important to note that optimal values of the design
variables (e.g. aspect ratio) generally varies for each parameter (see e.g. Fig. 8). Therefore,
performing a single experiment which is optimal in an overall sense compromises the
accuracy of individual parameters. To overcome this situation, different experiments which
are optimized for individual elastic constants may be designed. It is stressed that even
though the results given in this work are derived from a single test material, the qualitative
results hold for a wide range of other orthotropic materials typical for composites.

The estimation of ply material constants of laminated plates is problematic. Typically,
the parameters of such plates are highly correlated and tend to be inaccurate. The stacking
sequence has great influence on the severity of this effect. In particular, the more layers in
the laminate, the less reliable becomes the estimates. For certain lay-ups, it may well be
found that some or most of the parameters are ill-determined. In this case the attention
should be directed towards the global plate stiffnesses which may be deduced with a
precision that is much better than that of the ply parameters. However, this is not further
discussed in the present paper.

The type of inaccuracy studied here is that related to random errors in the frequency
data. The present study has paid no considerations to model errors. An inexact model adds
systematic errors to the estimates. One should bear in mind that in general, the smaller the
value of a/h and the higher the frequency number the less accurate is both the CPT- and
the HSDT-model. The effect of the CPT-model errors was already checked in Frederiksen
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(1997a) for thin plates (a/h ~ 50) by using natural frequencies calculated with the more
accurate HSDT-model. For thick plates, the inaccuracy of the HSDT-model itself may
cause some systematic errors of the estimates, but to check the significance of these errors
requires an even more accurate model.
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